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Abstract – In this paper we present Linear Transformation
Algorithm (LTA), which is based on a new transformation,
Linear Block Transformation (LOT). Experimental results show
that Linear Transformation Algorithm yields comparable
results to Burrows-Wheeler Algorithm (BWA) [4] and
outperforms Gzip, and Shorten Waveform Coder for near-
lossless ECG compression;  for lossless ECG compression  it
yields better compression than all the other techniques.
Keywords:  ECG Compression, Lossless, Near-lossless

I. INTRODUCTION

Effective compression of electrocardiogram (ECG) signals is
required in many applications including: (a) ECG data
storage, (b) ambulatory recording system; and (c) ECG data
transmission over the network.

Although lossy compression yields significantly higher
compression ratios while preserving diagnostic accuracy, due
to legal concerns it is not usually employed. Therefore, we
focus on lossless and near-lossless compression of ECG
signals.

Various researchers [8], [9] and [10] have investigated the
transform-based compression techniques for ECG data.
However, Block Sorting techniques have not been fully
investigated.

One of the recent developments in the text compression area
is the Block Sorting Lossless Data Compression Algorithm
(BWA) introduced by Burrows and Wheeler [4].  When
applied to text or image data, BWA achieves better
compression rates than Ziv-Lempel techniques with
comparable speed, while its compression performance is
close to context-based methods, such as PPM.  The lexical
sorting transformation utilized in BWA is called Burrows-
Wheeler Transformation (BWT).

Clearly et al. [5] viewed BWA (called BW94 by the authors)
as a context based method, with no predetermined upper
bound to context length.  Fenwick [6], has done a
comparative study on BWA.  He concluded that BWA is a
“viable text compression technique, with a compression
approaching that of the currently best compressors while
being much faster than many other compressors of
comparable performance” [6]. Arnavut and Magliveras [1]

have generalized the idea for permutations and introduced the
Lexical  Permutation Sorting algorithm (LPSA). They have
shown that the BWT is reducible to LPSA, and LPSA has
some choices not available with BWA, when the underlying
data to be transmitted is a permutation.

Since the introduction of BWA, block-sorting schemes have
attracted great attention in compression community.  In this
work we introduce a different block transformation, Linear
Order Transformation (LOT), and show that the LOT
transformation is faster than the BWT transformation and
yields better compression than the BWA, Gzip and Shorten
Waveform coder for ECG data.

II. LINEAR ORDER TRANSFORMATION

In this work we assume knowledge of some basic
mathematical concepts, including familiarity with elementary
properties of standard objects of discrete mathematics.

For the definitions of permutations and multiset permutations
interested reader should consult to [10]. Given a multiset
permutation (data string) ω = [3,1,3,1,2], we construct a
matrix, M, by taking consecutive cyclic left-shifts of ω as the
rows of M:

By sorting the rows of M lexically we transform it to, M’

while by sorting the rows of M linearly (with respect to the
first element in each row),  we transform it to
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Hence, we obtain two distinct matrices, M' and M'' with
respect to two different orderings. M' and M'' have the same
rows, but the ordering of the rows is different.  Let the first
column of M’ be denoted by F’, second column of M’ be
denoted by S’, and the last column of M’ be denoted by L’.
Similarly, let the first column of M'' be denoted by F'', second
column of M'' be denoted by S”, and the last column of M’’
be denoted by L''.  Notice that F' and F’’ are sorted values of
ω in ascending order, and other columns are not.

Burrows and Wheeler [4] showed that for any given L’ (the
last column of M’) and the index of the original multiset
permutation ω in M’, we can recover ω.  We now introduce
the Linear Ordering Transformation technique and show that
it is faster than the Burrows-Wheeler Transformation.

Definition  2.1   The linearly ordered matrix,
 M'' = M'' m , of a multiset permutation ω from  an
underlying set  X = { 1, 2, …, m } ,  is defined as follows:

1. Let initially M'' 0 = [ ] .

 2.  M'' v = [M'' v –1 ] * [Tv], where v ∈ X,  Tv  =  R1* R2 *…*
Rv , and a*b denotes  appending  row b to row a; Rj is the
multiset permutation formed by cyclically left-shifting ω
in (k-1)  positions, and k is the position (address) of jth -
occurrence of symbol v in ω..

To clarify the definition, we give an example. Let ω =
[3,1,3,1,2] be a multiset permutation from the set X = {1,2,3
}.  Initially, let  M''0 = [ ] be empty. The 1's  in ω occur in
positions two and four respectively. Since ω has two  v = 1,
M'' 1 = [M'' 0 ] * [T1] = [T1]  and T1 = R1 * R2. By cyclically
left-shifting ω in (2-1) = 1 position, we obtain R1 =
[1,3,1,2,3]; while by cyclically left-shifting ω in (4-1) = 3
positions, we acquire R2 = [1,2,3,1,3]. There is only one 2 in
ω and it occurs in the fifth position. Cyclically left-shifting ω
in (5-1) = 4 positions, we get T2 = R1 = [2,3,1,3,1].  Thus M'' 2

= [M''1 ] * [T2].  There are two 3's in ω and they occur at
positions one and three respectively. Hence, T3 = R1* R2 , and
by cyclically left-shifting ω in (1-1) = 0  position we obtain
R1 = [3,1,3,1,2], and by   cyclically left-shifting ω in (3-1) = 2
positions we obtain R2 = [3,1,2,3,1]. Therefore, M'' =  M'' 3 =
[M'' 2 ] * [T3].

An obvious observation about the linearly ordered matrix M'

 is this: For any two given two-tuples (F”i S”i ) and (F”k,S”k )
from the first two  columns of M'', where F”i = F”k, then the
pair  (F”i , S”i )  appears earlier than the pair (F”k , S”k )  in
M'' (scanning from top to bottom) if and only if the pair
appears earlier in ω (scanning from left to right).  Clearly, the
linear ordering induces a particular order on the pairs of the
elements (F”, S”). Because a particular ordering is induced,
we can always recover ω uniquely if the row index of ω in
M'' and the second column S” of M’’ are known. In our
example,  ω = [3,1,3,1,2] occurs at position 5  and the second
column is S” = [3,2,3,1,1].  Assume that both the row index
of ω and S” are transmitted to a receiver.  Upon receiving S”,
the receiver obtains the frequencies of the elements in  S” by
using the count sort [6]. Once the frequencies of distinct
elements in S” are known, the receiver constructs F” =
[1,1,2,3,3] and has the first two columns ( F”, S”) of M'',

        T
  1 1 2 3 3            
  3 2 3 1 1

Accessing to the fifth position of  (F”, S”), the receiver
acquires the first two elements of ω, (F”5 , S”5 )  =  [3,1]. By
marking the fifth entry, the receiver eliminates it from further
consideration (from the two-tuple (F”, S” ).The receiver
should  determine what follows S”5 = 1 in ω to find the rest
of the elements of ω. To discover the third element of ω, the
receiver scans the F” from top to bottom to determine the
first unused (unmarked) entry that has a value 1. In our
example, this is the first entry where F”1 = S”5  = 1. Hence,
S”1 = 3 should follow S”5  = 1 in ω. The receiver then
eliminates consideration of the first entry from the two-tuple
(F” , S” ). Since S”1 = 3 is determined, the process is
repeated to get the fourth element of ω. Again, the receiver
scans  F” to determine the position of the first unused entry
which contains S”1 = 3. By finding the first unused entry
which contains the value 3 at position four in F”, the receiver
easily discovers that the fourth element of ω is S”4 = 1.
Again, this entry is eliminated from further consideration.
Finally, to find the fifth element of ω, the receiver scans to
find the first unused entry which has value 1 in F”. In our
example, because the first entry that has a value 1 is used
previously, the second entry is considered, F”2  = 1.
Therefore, the last element of ω is S”  = 2, and ω =
[3,1,3,1,2].

The transformation described above is called Linear Order
Transformation (LOT). The LOT transformation requires
O(2n) time.  Let fj be the frequency of symbol j in a given
data stream. With one pass over a given data, frequencies (f1 ,
f2 , … , fm ) of different symbols can be discovered. Hence, for
each different symbol v in the data, a starting pointer
(address) Pv is determined. For example, for symbol  i ,  the
starting address initially  would be  Pi  = f1 + f2 + … + fi-1.
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Fig. 1: Lossless compression of ECG files

Fig. 2.   ECG files with loss value ± 1.

Fig. 3.   ECG files with loss value ± 3.

Fig. 4.   ECG files with loss value ± 5.

Using those pointers and scanning the data from left to right,
for each v in the data we write the value of the neighboring
element of v to the location pointed to by the pointer of v. We
then update the pointer. Clearly, this operation constructs S”
in O(2n) time. The time complexity required by the BWT
transformation to obtain L' is O (n log n ) time, because of the
lexical sorting [4] .  Hence, LOT is faster than BWT.  To
construct the original data of size n from S”, LOT would
require O(2n) time, which is also the time required by BWT
to construct data from L'.   When LOT is followed by the
MTF [3] and Run-Length coders, we call the technique
Linear Transformation Algorithm (LTA), similar to BWA.

III. EXPERIMENTAL RESULTS

Figures 1-4 show the compressed sizes of 22 different ECG
files with four different techniques. All the files   employed in
this experiment are obtained from Prof. Memon. Each ECG
file is of size 12000 bytes and each ECG signal in the file is
recorded with 10-bits. Since each ECG signals is recorded
with 10-bits, the BWA and LAT algorithms are modified
accordingly.  However, the Gzip and Shorten Wave Coder
are obtained from public sites and are used without any
modifications.

Figure 1 indicates that LTA scheme yields best compression
gain out of the three techniques, BWA, Gzip and Shorten,
when the files are compressed without any loss. Observe that,
when the data files to be compressed have loss value ± 1
(Figure 2) the LTA and BWA yields almost the same
compression gain. As can be seen in Figure 3 and 4, when the
degree of lost increases, BWA algorithm performs better than
the other techniques.
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IV. CONCLUSION

In this work, by expanding the theoretical foundations of
Lexical Permutation Sorting Algorithm [1] we introduced a
new blocks-sorting technique, Linear Order Transformation,
and showed that LOT is faster than the BWT transformation .

We have shown that when one transforms the data with  the
LOT transformation followed by the MTF and Run-Length
coding, the compression  gain obtained is better than the
recently introduced BWA and the other well-known
compression schemes, such as Gzip and Shorten  Waveform
coder for lossless ECG data. We also have shown that the
Block Transformed data yields better compression than Gzip
and Shorten Waveform coder in lossless and near-lossless
cases.

Our future work will involve with extending this work to
compare the results of all the transformed based coding
schemes, such as the ones reported in [8][9][10]. However,
considering the results of Gzip as a base for judgment, we
believe that Block Sorting Transforms yields better
compression gain than the other transform based coders for
ECG data.
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